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Abstract

Research in computational organizational theory explores the complex interactions between organizations and their
members. Organizations are legally autonomous entities that structure the efforts of individuals to achieve large goals.
Interesting behavior often emerges from the interactions and demands of modeled primitives. This introduction describes the
common ground and recent advances in multimodeling, multilevel modeling, and rapid model development. We conclude
this summary with discussion of issues of model fidelity and model validation.

Introduction

Computational organization theory (COT) is a research disci-
pline, which develops formal computational models to under-
stand, extend, and examine organizational theory. Specific
questions of interest to researchers in this field include organi-
zational decision making, adaptation, and organizational
learning. Often, these researchers are interested in the complex
interdependencies between individuals and the organizations of
which theyaremembers.Organizationsneed individuals tomake
decisions, yet individuals benefit from membership in an orga-
nization: the organization is not merely the sum of its members.

Models developed by COT researchers tend to embody
theory, represented as mathematical and computational struc-
tures and processes, of how an organization may behave. These
models are intended to reproduce behavior analogous to the
behavior of real-world organizations, but are implemented as
computer programs. These models can be created and tested
through low-cost simulation methodologies – although vali-
dation usually requires some form of comparison with
either empirical data or with another model, which has
been compared to empirical data (e.g., see Schreiber and
Carley, 2013).

Organizational models have been implemented in many
diverse ways – most often in the way that best suited the
theoretical premises of the modeler and with which the
modeler was fluent. These methods vary from formal mathe-
matical models to boundedly rational agent models. Organi-
zational models tend to focus on either processes (where the
people are implicit) or people (where the processes are often
implicit). This article focuses on organizational models that
place the individual as an organizational decision maker,
a people-oriented perspective (although subgroups may also be
represented in such models). Thus, these models are multi-
agent simulations.

There are other methods for modeling organizations. For
a thorough introduction to the art of modeling organizations
as collections of intertwined processes, see Carlsen (1997) or
Jørgensen (2004). In contrast, some researchers are primarily
interested in organizational ecologies (Hannan and Freeman,
1977) – where the primary unit of analysis are organizations,
rather than people within those organizations. Recent work in
multilevel modeling (discussed below) is attempting to unite
these various perspectives.

This article will frequently draw examples and grounding by
presenting ideas from Construct (Carley, 1991a; Carley et al.,
2009). Construct is a turn-based network-centric simulation
of information and belief diffusion, based on the theory of
Constructuralism (Carley, 1991b), and inheriting the infor-
mation processing perspective of the Carnegie School (Simon,
1957; Cyert and March 1963).

Computational models, instantiated as simulations, are
valuable to researchers in multiple ways. Computational
methods allow theoreticians to explore the sources of complex
and interesting organizational behavior, often finding that
relatively simple rules when localized and in aggregate can
produce these phenomena. This idea, that the interactions of
simple processes produce complex and interesting behavior, is
often called emergence. These methods also allow theoreticians
to explore how large classes of organizations may behave in
a particular environment of interest compared to other orga-
nizations from the same classification scheme. In general, the
translation of theory into computational model tends to
require that theory to be expressed with more clarity and
precision than that required by textual description, which
improves the resulting descriptions of the theory.

For applied research, computationalmodels allow researchers
to explore counterfactual scenarios for specific organizations of
interest. These counterfactual scenarios allow researchers to
answer ‘what-if’ questions, which it would be impossible to
explore practically or ethically in the real world. Model results, of
course, cannot be assumed to provide a specific and valid
prediction of outcomes, but can often (if the theoretical model
has been validated) be useful to examine from a trend analysis
perspective.

COT makes these important assumptions about organiza-
tions and phenomena:

l Phenomena are modelable. If we cannot model it, we
cannot examine it.

l Uncertainty is important. Individuals make mistakes.
Environmental conditions can rapidly shift.

l Humans are boundedly rational. Because of cognitive and
physical limitations, humans do not know everything about
the world they live in, what they know may be wrong, and
they may not be able to access what they know at all times.

l Organizations are organized to do work. Most metrics
focus, explicitly or implicitly, on task performance.
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l Outcomes are path dependent. Choices made in the past
affect the present and future of an organization.

l Organizations may be designed and manipulated. Humans
can create an initial plan for an organization, and these
plans can be adjusted during an organization’s life.

We will begin by defining the concept of an organization.
From there, we will discuss the common elements of multi-
agent simulation, and the representational choices that inform
these models. After we describe important elements of models,
we will discuss methods used to both inform and test models.
Finally, we will explore common issues that face all modelers
and model consumers.

What is an Organization?

The definition of an organization, as opposed to other collec-
tions of people, can be difficult to clearly enumerate. We find it
useful to characterize organizations as entities that have:

l Multiactor membership: actors may or may not be human.
l Task-orientation: organizations are structured to perform

work.
l Goal-driven behavior: tasks support goals. Goals may

change over time.
l Agency: organizations can alter themselves and their envi-

ronment, and be affected by external changes.
l Independent knowledge: organizational knowledge is not

directly tied to the knowledge of individuals.
l Legal autonomy: individuals are not directly responsible for

the actions of the organization.

As such, organizations are multilevel entities such that the
structure of the organization can be represented as a series
of interconnected networks (Carley, 2005). One of these
networks, and perhaps the most studied network, is the human-
to-human network, which typically operates at a formal or
authority level and at an informal or friendship, advice and
collaboration level. Another network that is particularly
important from a cyber perspective is the information tech-
nology (IT)-to-IT network, which is comprised of all such
technology, associated databases, and the electronic modes of
communication among these. Connecting the humans and the
IT is another network often realized over multiple types of
media. Then there are the knowledge network that links the
agents to the data available and the activity network which links
the agents to their tasks. And there is the traditional task
network, familiar to operations research, showing what needs to
be done before or in conjunction with what. A coherent
collection of networks that describe a single organization is
referred to as a meta-network (Carley, 2002). The analysis of
these meta-networks for assessing organizations is a growing
field, and there are analytical tools, such as ORA (Carley, 2014),
optimized for this type of analysis. Using such tools organiza-
tional units can be designed and their performance assessed.

Organizations exist, from a functional perspective, to
organize individuals and resources to achieve goals not within
the capabilities of any single individual. As such, collections of
individuals must be brought together. Individuals cooperate
and perform tasks in service of the organization’s goals. The

goals of an organization are distinct from the goals of any of
its members, although they may be well aligned. Goals are set
by organizational processes, usually involving the input of
multiple decision makers. In the pursuit of their goals, orga-
nizations change themselves and the environment around
them. These changes may or may not be in their favor. Over
time, as the organization achieves goals, unique organizational
knowledge is formed. This organizational knowledge is not
a description of the current knowledge of its individuals, but is
instead distilled from individual contributions over time and is
often stored in an organization’s standard operating proce-
dures. In order to organize individuals to do work toward large
goals, particularly those that may have consequences for others,
members of organizations must feel protected from the legal
consequences of the organization’s actions – the organization
must have legal autonomy.

As stated earlier, organizations exist to organize the efforts
of individuals toward large goals. How do organizations
attempt this? They do this by structuring the responsibilities,
interactions, and incentives of individuals to maximize
the alignment of an individual’s capabilities and goals with the
organization’s needs. This is sometimes referred to as the
‘design’ of an organization. Because there are complex inter-
actions between the environment in which an organization
operates, the capabilities of its members, and the goals of an
organization, there is no one optimal design. One goal of
COT’s research is in understanding the interactions between all
of these factors and an organization’s design.

Now that we share a common understanding of an organi-
zation, we now discuss multiagent simulations and the repre-
sentational choices required of developers of these simulations.

Defining a Multiagent Simulation

To define a working organizational computational model, the
modeler/theoretician must establish representations of the
environment.

The environment can be roughly characterized based on
four questions.

l Is time continuous or discrete?
l Is space physical or virtual?
l What is in the environment?
l How could the environment change over time?

The following subsections will attempt to describe common
modeling choices to answer each of these questions.

Representations of Time

Time, in simulation, can be either continuous (like the real
world) or discrete, where it can be separated into equal-sized
pieces. We call these pieces ‘turns.’ In discrete-time (or turn-
based) simulation, everything that can act may have an oppor-
tunity to do so once per turn. In continuous-time simulations,
agents may take new actions as computing resources allow.
Some effort is usually made (in competitive environments in
particular, see below) to ensure that agents have roughly
equivalent computational resources, but not necessarily. Games
like risk, chess, and monopoly can all be viewed as turn-based
simulation.
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Turn-based simulationmay seem like a gross simplificationof
the realworld, rendering such simulations suspect, but in practice
it is a relatively harmless simplification that makes problems of
agent concurrency and computational resource access trivial.
Turn-based simulations are appropriate when (1) actors should
be expected to have similar opportunities to participate, and (2)
when the phenomenon of interest occurs over long periods of
time: hours, days, or months, as opposed to seconds or minutes.

Representations of Space

Space in simulations may be physical or virtual. If space is
physical, then agents are placed at points on a map. Physical
space may, like time, be continuous or discrete. Discrete space
involves dividing up the area of the map into equal-sized
chunks, often called tiles or blocks. Cellular automata exist in
such tile-worlds, and Schelling’s Segregation Model (Schelling,
1971) also used such a world, see Figure 1. Tile-worlds may or
may not be connected at their opposite edges – if both edges
are connected, a tile-world forms a ring torus, which can
remove problematic edge effects.

Physical space in simulations is useful if the theory requires
it. A simulation examining, for example, how people interact as
they move about an office building will require some idea of
physical space and of entities moving through it and interacting
with other entities. Typically, simulations with physical space
use it to constrain agent perception and interaction.

Often in organizational models, space is virtual – entities
are not placed in physical space. Instead, connections are
drawn between entities that indicate who may affect and/or
interact with who. These connections can be represented as
networks, matrices of who is connected to whom, where ‘0’
indicates no connection and ‘1’ indicates a connection, as

shown in Figure 2. Modern simulations often use multiple
network semantics to enrich the virtual environment.

Virtual environments are useful when physical adjacency is
not a primary driver of interaction in the simulation. For
example, interactions between people doing knowledge work
may bemore driven bywork responsibilities rather than physical
adjacency. Virtual environments, like physical ones, are used to
constrain agent perception and interaction possibilities.

Elements in the Environment

What exists within the simulation environment? This is
a fundamental choice that should be driven by theory. Because
organizations are goal-driven entities, organizational learning
models usually include some representation of agents,
knowledge, and tasks. Although an organization, as a whole,
may be said to have some particular piece of information, that
information may not be where it can be usefully applied (as
defined by tasks). Thus, one common method of evaluating
simulated organizational performance is through examining
the agreement between three networks (although they may not
be represented, explicitly, as networks by the modelers). These
three networks are the knowledge network (who knows what),
the assignment network (who should do what), and the
requirements network (what knowledge is needed for what), as
shown in Figure 3.

Not all organizational models include explicit representa-
tions of these three objects, but their presence is often implied
in the theoretical descriptions of the model.

Agents
Usually, agents are representations of humans, but some simu-
lations allow the set of entities to include nonhuman objects,
such as IT systems, and may also include entities at different
levels of granularity, an agent representing a single individual
may interact with an agent representing a team of individuals.

Entities that can affect their own state or the state of others
have agency. We refer to these entities as agents. Entities
without agency will usually be referred to as objects. Agents
may act on objects, but objects do not act directly on

Figure 1 A tile-world, with agents in blue. On the right, Manhattan
distance is shown relative to an agent on the top-left.

Figure 2 Networks are a convenient and useful representation of
virtual space environments.

Figure 3 Three common objects within an organizational model are
agents, knowledge, and tasks.
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agents, although their presence may alter the actions chosen by
an agent.

Agents have bounded rationality, limited access to the state
of the larger world in which they inhabit. There are various
limitations that can be prescribed to these agents, usually based
on the larger theory of interest and drawn from human limi-
tations. Agents may be only able to access state for things they
can directly observe. They may forget knowledge they acquired
earlier. They may have a limited number of refinement cycles
before a decision must be made. Their perception of state may
be error prone. Agents should have one or more of these
limitations to be useful in a multiagent simulation.

Following directly from bounded rationality, agents also
have limits to the possibilities available to them in their social
interactions (Simon, 1991). Formal and informal mechanisms
frequently prevent individuals from interacting with each
other. Although it may be theoretically possible for the
mailroom assistant to interact with the CEO of a Fortune
500 company, such interactions are unlikely to be routine and
often may be safely discounted. Organizations often seek to
impose structure to effectively distribute coercive, reward, and
legitimate power (French and Raven, 1959). Individuals, in
order to protect their own social capital, often seek to prune
social ties for their own benefit (Burt, 1992, 1997). Thus, useful
models of organizations will frequently limit interaction
possibilities for their agents.

Agents must have actions available to them to be classified
as agents. Again proceeding from theory, a modeler must
define the actions available to agents and the decision heuris-
tics used to select actions. Actions may be destructive (attacking
another agent) or nondestructive (sharing knowledge with
another agent), but all actions must have consequences that
may alter future behavior of this or other agents.

Some models have entities that represent individuals but
do not allow these representations to take independent action.
Instead, a single model controller, which represents the orga-
nization, acts upon these agents. March’s Mutual Learning
Model (1991) is an influential example of such a model.

In Construct, agents may choose an interaction partner
from all-available alters. They share knowledge with these
partners, which may alter the partner’s perception of the agent.
The choice of who to interact with is weighted by two dynamic
drives: (1) the desire to interact with alters similar to the agent,
and (2) the desire to interact with alters who appear to have
rare knowledge. Because of these two drives, the act of sharing
knowledge will change the probabilities for both agent and
alter of who they will interact with in the future.

Knowledge
Knowledge is information useful to the agents, either inform-
ing their choices of actions or helping them to complete tasks.
Knowledge may be represented in a variety of ways; some
methods include access to resources, rules that constrain an
agent’s actions, elements of the state of the environment that
the agent can perceive, and as bits in a bit string. Organiza-
tional knowledge and individual knowledge may have
different representations in the same simulation. In simula-
tions where knowledge is represented as an explicit object, it is
usually assumed to have some evidentiary basis – it is not
merely an opinion. The transfer of knowledge, unlike other

material resources, does not deplete the donor’s store. Agents
may not know, however, what they know.

In Construct, agents have two separate knowledge
representations. The first is the model’s ground state, what
agents knows what, represented as multimode Agent x
Knowledge matrix. Construct agents also have a perceptual
matrix of what they think other people know, each agent
thus has their own Agent x Knowledge matrix.

Tasks
Tasks are activities that are expected to have some useful larger
purpose for the organization. They are not identical to goals,
but may be instrumental in completing goals. Alternatively,
they may be present in simulations where goals are never
modeled or discussed.

Task performance may be dictated by agent actions, or may
be inferred from agent characteristics. Task success is usually
not guaranteed: it may be informed by agent knowledge, by
exogenous probabilistic interference, or by third-party
constraints.

In Construct, task performance is determined by access to
knowledge relevant to the task. Tasks are assigned to agents at
simulation run-time, and their performance is assessed each
turn. Because tasks in Construct are assumed to be knowledge
intensive, they are modeled as binary information tasks, if the
agent has a majority of the required information for the task,
the agent succeeds. If not, they fail at the task.

Current Research

In this section, we introduce some of the new trends in COT
research. We discuss three trends: multimodeling, multilevel
modeling, and rapid model development.

Multimodeling and Model Interaction

Multimodeling is an effort to leverage previous modeling work
by incorporating one or more models into a single unified
process. There are four ways models can be linked together on
the basis of how they are connected by inputs and outputs,
these are (1) integration, (2) docking, (3) interoperability, and
(4) collaboration (Carley et al., 2012) as shown in Figure 4.

Integration, which involves refactoring models so that they
work within a single common system envelope, is the most
obvious but also most expensive method of integrating
models. Representations of the phenomena must be aligned
for all models, and this process often involves significant
investment in new development work.

Docking (Axtell et al., 1996) is an approach to model
validation where two models of the same phenomenon are
directly compared on their features and their results. Docking
two models require those models to have a common input and
a common output. Model results are compared on three
increasing levels of equivalence: relational, statistical, and
numerical. Beginning with numerical equivalence, this is
where one model produces the exact same numbers as the
comparison partner, the two models can be, essentially,
swapped interchangeably across tested values. Statistical
equivalence is a characteristic of two models that they produce
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functionally identical results across tested values. Relational
equivalence is where two models do not produce identical
values, but instead produce similar patterns of output value
across tested input values. Relational equivalence is usually
considered sufficient to say that two models are docked to each
other, because model inputs, although notionally similar, are
rarely perfectly matched in the granularity and responsiveness
of the input data.

Collaboration, like docking, involves two or more models
that take in a common input, but do not produce similar
outputs. Instead, both models take the input data, along with
other data, and use that to predict different new data. Models
can be easily made collaborative by matching the representa-
tions of their input data.

Interoperability is the idea that the outputs of one model
can serve as inputs to another model. This is a useful and often
inexpensive technique, particularly when building one model
to extend and leverage the power of an older, more established
model, because the data representations both required by and
outputted by the older model are well understood. It is one
approach that can lead toward Integration (where the models
are in the same system envelope), but can be useful as part of
a looser confederation of systems.

Multilevel Modeling

Multilevel modeling is an effort to account for both group and
individual level effects concurrently within a model. Issues in
multilevel representation have been central to organization
science research (Rousseau, 1985). Statistical methods have
found some success in grouping observations according to
larger real-world structures (Snijders and Bosker, 2012). These
methods help account for observations that, due to the
inherent grouping of subjects within the frame of the
research question, were not completely independent, such as
students within a common classroom.

Within the modeling conducted in COT, multilevel
modeling is used to indicate that there are multiple levels of
dynamic description within a single model. For example, the
model may have 42 individuals, 5 teams, and 2 multiteam
organizations, but the number or characteristics of higher-order

descriptions (the teams and organizations) should change over
the length of the simulation. These descriptive characteristics are
important to the model’s mechanisms.

There may be multiple levels of agency within a single
model. The individual may take actions within their purview,
and the groups, teams, and companies of which they are
members may also take actions separately as autonomous
entities. The actions of individuals may influence the actions of
the team, but they are not the same action. The actions allowed
to each level of actor are usually distinct, although there may
be parallels.

Adversarial models, where individuals are members of
teams hostile to each other, could be described as a multilevel
model, but only if the condition of the larger group unit has an
effect on the actions of the individual, such as in Morgan et al.,
2010. Adversarial models, where the state of the group has no
direct impact on the individual’s state should not be charac-
terized as multilevel models.

In Construct, individuals use their knowledge of a not well-
known actor’s group affiliations to interpret what that actor is
likely to know. As they interact with these actors, their
perception of these groups will change, which will affect their
likelihood of interacting with other not well-known alters. In
this way, Construct is a multilevel model.

Rapid Model Development

Models take time to build. As models move from highly
theoretical and intellective exercises to an interest in modeling
specific scenarios of interest, the timeline for development
shrinks even as the modeling requirements increase. Models
can be made completely irrelevant by events if their results
are predicated on assumptions no longer valid. For example,
the organization has restructured, or a key leader has left the
company. Thus, this research work is driven heavily by the
needs of applied model users.

Rapid model development takes lesson from object-
oriented and data-driven development paradigms. Rather than
explicitly enumerating all state objects within a given system,
the model software defines interface standards and file formats
that can be used to provide this state. This decouples the

Figure 4 Multimodeling methods ‘D’ stands for data. A line is drawn from data to a model if it is input to that model, and a line is drawn from
model to data if the data is an output of that model.
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model, which specifies how agents will interact with their
environment, from the model’s initial state. Modelers must
still define behavior for both agents and the environment.

This decoupling provides practical advantages when
attempting to apply a theoretical model to a given applied
context. Data used to inform the model can either be generated
from theoretically useful test conditions, or created by trans-
lation of real-world data into a format digestible by the model.
This translation process, although nontrivial, provides an
opportunity for channeling the enormous data created by
social media into models.

On a theoretical basis, it also provides an important
distinction between the model as an environment and the
initial state of the model. The validation of a model without
a data-driven element requires evaluation not only of the
model’s behavior but also of the model’s initial state.
Separating these elements allows for concerns about the
model to be more easily addressed.

For example, Construct models have been informed by the
analysis of news articles (Pfeffer and Carley, 2012), by field
studies of teams (Schreiber and Carley, 2007), by doctrinal
texts on organizations (Lanham et al., 2011a), from combi-
nations of doctrinal and text-analysis work (Lanham et al.,
2014), and from subject matter expert estimates (Lanham
et al., 2011b).

Model Fidelity and Model Validation: Common
Concerns

Any discussion of COT is incomplete without discussing the
highly related issues of model fidelity and model validation.
The decisions modelers take in choosing to represent
a phenomena are not guided, intrinsically, by deductive
processes. Rather, the process is a creative one. Modelers may
make poor decisions. Understanding how to assess models is
important for consuming model results appropriately.

Model Fidelity

Model fidelity focuses on the issues of actor and state repre-
sentation. Models exist on a fidelity axis, ranging from highly
theoretical intellective models, which simplify and abstract the
environment of phenomena to their essentials, to highly
emulative models, which attempt to reproduce as realistic an
environment as possible, as shown in Figure 5. All models, of
course, must abstract at some point. A perfect reproduction of
the modeled object is not a model, it is the thing itself.

High model fidelity (emulative simulation) is particularly
important to simulations for use in training (Hays and Singer,
1989), although even intellective simulations can be useful for
training in the business context (Van Ackere et al., 1993). The
vast majority of COT models are intellective in nature.

Data-oriented design (as discussed in the rapid model
development section above) blurs the line between emulative
and intellective models. Models can be built with relatively
simple behaviors available to both agents and the environ-
ment, but be instantiated with very complex and detailed
initial states.

Questions of model fidelity that concern both a model
developer and a model consumer are:

l Does this model include the factors I think are important to
exploring this phenomena?

l Does this model include factors that I do not think are
important to exploring this phenomena? Is it unnecessarily
complex?

l Does this model ignore important interaction possibilities
between agents and the environment?

Model Validation

Where model fidelity focuses on the questions of representa-
tion, model validation asks the question ‘is this a good model?’
By this, we mean ‘does the model, given an initial state,
produce reasonable behavior?’ Of course, the answer is almost
always ‘it depends, how will the model’s results be used?’
Validation is thus tied, even more intrinsically than model
fidelity, to the intended purposes of the model. Models
expected to guide decision makers should be subjected to
much more rigorous validation that models intended merely
for discussion.

In the organizational theory domain, standard experimental
assumptions do not hold. When making interventions on
a real-world organization, it is rare for the experiment to be
easily repeatable or for the results to be easily replicated.
Experimental controls can be difficult to clarify, and gathering
all necessary data is often infeasible or unethical. The
difficulty of traditional experimentation makes a strong case
for COT, but we should approach testing the resulting
computational models with a similar level of rigor, evaluating
them with ‘virtual experiments.’

Virtual experiment methodology also makes some assump-
tions. It assumes the model’s code is accurate, that the model
has sufficient fidelity to the phenomena, and that standard
statistical tests can be used to compare outcomes. Thus, ques-
tions of a model’s fidelity should be addressed before a model’s
validation process even begins. Hopefully the modeler has
considered the model’s fidelity multiple times over the model’s
development period.

Validation, it should be noted, is hard. Model validation
can require as much or more effort than the model’s devel-
opment. Human evaluators usually have some bias toward
their products, and neutralizing this bias is difficult. Validation
is knowledge intensive, requiring a deep understanding of the
empirical phenomena being modeled (Louie and Carley,
2008). Validating agent-based COT simulations is also
difficult because agent behavior is not predetermined and

Figure 5 Balancing the fidelity needs of the simulation is an important
modeling effort. Most computational organizational theory models are
intellective.
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path dependent – many simulation runs may be necessary to
understand the full scope of possible system behaviors.
Finally, the empirical data for validation may simply not be
available at an appropriate granularity.

Validation can occur at multiple levels (Maxwell and
Carley, 2009). The type of validity necessary for a model
depends on its purpose (Burton and Obel, 1995). These
levels are:

l Internal validity: the model’s code is error free.
l Parameter validity: the model’s parameters allow expres-

sion of all critical variables of the phenomenon.
l Process validity: the behavior of agents and the environ-

ment fit with current understanding of the phenomenon.
l Face validity: the results of the simulation, given the initial

state, match the opinions of experts.
l Pattern validity: the outputs of the models show similar

valence and magnitude of change across tested parameters
to empirical data. It matches the pattern of the available
empirical data. If abstracted, this is sometimes known as
‘stylized fact validation.’

l Value validity: the outputs of the models show very similar
values to those found in empirical data.

l Theoretical validity: the model correctly expresses a theory
that explains the phenomena of interest.

Docking (Axtell et al., 1996; Burton and Obel, 1995) is also
a model validation technique. A model that is docked to
another model and has established relational equivalence (as
discussed above), can make some claim to the pattern validity
of the original model. Value equivalence, if achieved, would
allow the docked model to inherit the value validity of the
original model.

In multimodeling environments, validation of all the
models at once can be difficult or impossible. Instead, inputs
and outputs of these models are validated against real-world
data individually, a process called validation-in-parts. This idea
inherits from modern manufacturing process validation,
which focuses on the outputs of the manufacturing effort,
not on the mechanics of that effort.

Summary

In this article, we have introduced the area of COT. Research in
COT explores the complex interactions between organizations
and their members. Interesting behavior often emerges from
the interactions and demands of modeled primitives, whether
people or processes, although this introduction has focused on
people-oriented simulation.

We have defined organizations as legally autonomous
entities that attempt to achieve goals not within the capacity of
any individual member. An organization’s pursuit of its goals
will change both the organization and the environment in
which it operates, affecting other organizations (and them-
selves) either beneficially or adversely. Members of an orga-
nization do tasks, and both require and generate knowledge in
the performance of these tasks.

To provide a useful introduction to COT research, we
explored the requirements of defining and instantiating
a multiagent simulation, using Construct (Carley, 1991a) as an

illustrative example throughout. We discuss time, space, and
elements within an environment, focusing on the importance
of identifying agents and what actions those agents can take.

After identifying important elements to any single model,
we discussed some important current trends in COT research.
Multimodeling is an effort to leverage multiple models to
provide a more complete picture of complex phenomena.
Multilevel modeling allows actors at multiple levels of granu-
larity to have important effects on actors at other levels. Rapid
model development leverages data-driven approaches to
software development: divorcing model behavior from
a model’s initial state.

Finally, we discuss important points every COT model
consumer and developer should be aware of, issues of model
fidelity and model validation. Model fidelity explores the
issue of whether a model’s representation of phenomena is
appropriate, too simple, or unnecessarily complex for the
phenomena of interest. Model validation asks whether the
model is sufficient to the purpose for which it will be applied.

COT is a valuable and interesting area of research with
important theoretical and applied areas. We hope this intro-
duction has been useful.

See also: Behavioral Theories of Organization; Computational
Approaches to Model Evaluation; Decision and Choice:
Bounded Rationality; Dynamic Decision Making; Ecology:
Organizations; Emergent Properties; Group Processes in
Organizations; Interorganizational Relationships and Networks;
Knowledge Representation; Network Analysis, History of;
Organizational Control; Social Simulation: Computational
Models; Stochastic Models.
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